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aHögskolan i Halmstad, Box 823, 301 18 Halmstad, Sweden
bSpace Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow, Russian Federation

cFakultät Mathematik, Naturwissenschaften und Informatik, Brandenburgische Technische Universität Cottbus,
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Abstract

We analyze the stability of a Taylor–Couette flow under the imposition of a weak axial flow in the case of a very short

cylinder with a narrow annulus gap. We consider an incompressible viscous fluid contained in the narrow gap between

two concentric short cylinders, in which the inner cylinder rotates with constant angular velocity. The caps of the

cylinders have narrow tubes conically tapering to very narrow slits, allowing an axial flow along the surface of the inner

cylinder. The approximated solution for the Taylor–Couette flow for short cylinders was found and used for the

stability analysis instead of the precise but bulky solution. The sensitivity of the Taylor–Couette flow to small

perturbations and to weak axial flow was studied. We demonstrate that perturbations coming from the axial flow cause

the propagation of dispersive waves in the Taylor–Couette flow. While in long cylinders the presence of an axial flow

leads to the breaking of axial symmetry, in small cylinders it leads to the breaking of mirror symmetry. The coexistence

of a rotation and an axial flow requires that, in addition to the energy and the angular momentum of the flow, the

helicity must also be studied. The approximated form for the helicity formula in the case of short cylinders was derived.

We found that the axial flow stabilizes the Taylor–Couette flow. The supercritical flow includes a rich variety of vortical

structures, including a symmetric pair of Taylor vortices, an anomalous single vortex and quasiperiodic oscillating

vortices. Pattern formation was studied at large for rated ranges of azimuthal and axial Reynolds numbers. A region

where three branches of different states occur was localized. Numerical simulations in 3-D and in the axisymmetrical

case of the model flow are presented, which illustrate the instabilities analyzed.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Since Taylor’s famous experiments in long cylinders (Taylor, 1923), many experimental and theoretical investigations

of the interesting phenomena of the occurrence and evolution of Taylor vortices have been undertaken. The bulk of

these studies was devoted to cases of long cylinders (Ludwieg, 1964; Joseph, 1976). This was done under the assumption
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that a sufficiently long cylinder and periodic boundary conditions will emulate the infinitely long cylindrical region well.

In addition, such regions are convenient for theoretical investigations. The simple form of the base flow was a

fundamental part of Joseph’s (1976) global stability analysis. The base flow, in the case of infinitely long cylinders, does

not depend on the axial coordinate, and depends only on the radius.

The experimental investigations of short cylinders started much later and brought surprising results [see, for example,

Mullin and Benjamin (1980), Benjamin and Mullin (1981), Benjamin and Mullin (1982)] which indicated that the zone

and the magnitude of the influence of the caps of cylinders is much bigger and effects the kind of motion in the whole

region. It was assumed that near the cylinders’ caps the flow in the boundary layer is directed from the outer to the inner

cylinder resulting from the existence of an Ekman boundary layer. The experiments, however, gave a more complicated

picture of these motions. There exists also an atypical flow in the boundary layer in opposite direction, i.e. from the

inner to the outer cylinder connected with the existence of the ‘anomalous mode’. The first mathematical model which

took the influence of the cylinder caps into account was the work of Schaeffer (1980). This model is not very consistent

and needs improvement. The role of the anomalous mode was later studied numerically and experimentally in the works

of Cliffe and Mullin (1985), Cliffe et al. (1992) and Streett and Hussaini (1991). The transient features of the circular

Couette flow were investigated in laboratory and numerical experiments (using the commercial program ‘Nekton’

(Fluent GmbH) by Neitzel et al. (1995). The results of the numerical experiments were close to the laboratory

experiments. In the case of short cylinders results with an aspect ratio G�1 (relation of the annulus span to the annulus
gap width, defined in Section 2), usually only one pair of Taylor vortices emerged. In general, this case garners little

interest, due to low expectations for the emerging patterns. The experiments of Aitta et al. (1985), Benjamin and Mullin

(1981) however, found a series of interesting flow patterns for short cylinders. A non-equilibrium tricritical point occurs

when a forward bifurcation becomes a backward bifurcation. In the Taylor–Couette problem the tricritical point can be

observed for GT ¼ 1:255 in the classic case of pure rotation of the inner cylinder without axial flow, as demonstrated in
Aitta et al. (1985) and later in Mullin et al. (2002), Streett and Hussaini (1991). The system of two vortices is

symmetrical if the rotation velocity does not exceed a critical velocity v1: If the velocity of the flow is larger, v4v1; then
one vortex grows at the expense of the other. In the case of forward bifurcation, symmetry is broken continuously; and

in the case of backward bifurcation, abruptly. In phase transition language, this is a bifurcation of second order or first

order, correspondingly (Bhattacharjee, 1987). The continuous transition was observed for GoGT and the abrupt one

for GToGoGC ; where GC ¼ 1:292:
An exhaustive study of the influence of finite length effects has been made for the classic arrangement of two

concentric cylinders with a very small aspect ratio G 2 ½0:5; 1:6� and a relatively large annulus with a radius ratio
(relation between the radii of inner and outer cylinders, see Section 2) of Z ¼ 0:667 for moderate Reynolds numbers
Re 2 ½100; 1500� in the work of Furukawa et al. (2002) in cases when the inner cylinder is rotating. The numerical
investigations were verified by experiments. The three main flow patterns they found correspond to a normal two-cell

mode, an anomalous one-cell mode and a twin-cell mode. A steady case as well as an unsteady mode of fully developed

flow that differs from wavy Taylor–Couette flows were obtained.

There exists a series of experimental and theoretical works devoted to the linear stability of the Taylor–Couette flow,

which imposed axial effects. The first such analysis was done for cases of axisymmetric disturbances in a narrow gap

(Chandrasechar, 1960; Di Prima, 1960). The work of Marques and Lopez (1997) analyzes the linear stability of the flow

in the annulus between two infinitely long cylinders, driven by a constant rotation and harmonic oscillation in the axial

direction of the inner cylinder using Floquet theory. The axial effects in the Taylor–Couette problem were studied in the

work Meseguer and Marques (2000) on two different flows. In the first, the axial effect is introduced by an inertial axial

sliding mechanism between the cylinders, and in the other, via an imposed axial pressure gradient. In all cases, the

annular gap is much larger than in our case and the radius ratio is Z ¼ 0:5; . . . ; 0:8: The stabilizing effect of a periodic
axial flow was studied in the works of Chandrasekhar (1961), Hu and Kelly (1995), and Weisberg et al. (1997). Ludwieg

(1964) studied experimentally cases of very long cylinders with an aspect ration of G ¼ 80 and a radius ratio of Z ¼ 0:8;
as well as an axial flow that fills full cross sections between the cylinders. In his work Ludwieg describes the breaking of

axial symmetry which did not take place in our case.

In the work of Lueptow (2000) the stability problem of a Taylor–Couette flow with axial and radial flow was studied

for a relatively large radius ratio Z ¼ 0:83 and pressure-driven axial flow in the whole annulus. It was found in all these
studies that the axial flow stabilized the Taylor–Couette flow and enabled a multitude of supercritical states with a rich

variety of patterns.

Nevertheless, the theory of the Taylor–Couette flow is far from complete, as, for instance, the stability problem in the

system of Taylor vortices and classic Couette flow as subject to the influence of cylinder caps was not investigated. It is

also a bit astonishing that the exact analytical solution for the azimuthal component of the Taylor–Couette flow profile

with boundary conditions on cylinder caps was obtained just recently in the work of Wendl (1999). His results expose

the strong influence of caps on flow profiles. For a wide range of radius ratios Z; the difference between the two profiles
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(with and without finite-length effects) is approximately a logarithmic function of the aspect ratio G: The solution is
given in the form of a slowly convergent series containing trigonometric and Bessel functions. To give a qualitative

analysis of instabilities, one takes an exact solution as a base flow to linearize the Navier–Stokes equations. This type of

solution is not convenient for further analytic studies of instabilities.

In the present work, we use the theory of small perturbations to study the instability of the laminar Taylor–Couette

flow in a short cylinder. The geometry of an annular gap and the boundary conditions are given in Section 2. Our idea

was to find an analytical formula for the azimuthal component which is simpler than that in Wendl (1999) but one that

can still give us an approximation of the Taylor–Couette flow with finite-length effects as good as those found in Wendl

(1999). In Section 3 we describe this solution and discuss the region of applicability of the found approximation.

The solution obtained for a short cylinder is quite suitable as a base flow for a comprehensive study of instability

effects. This study is represented in Section 4. The onset of instability is predicted using the method of local analysis. In

this method, the equations governing the flow perturbation are linearized. Exactly because the appearance of instability

depends not only on the base flow but also on the amplitude and type of flow perturbations, two different types of

perturbations are studied in this section. We investigated the basic flow just before bifurcation appeared, and the main

emphasis of our work was to investigate which physical phenomena lead to instabilities in the flow. The base flow in our

case is strongly inhomogeneous in the axial direction, and Joseph’s method cannot be applied to such a base flow.

The consideration of the sensitivity of the Taylor–Couette flow regarding small perturbations corresponding to an

axial flow is most important for industrial applications. We take the case of a very narrow annulus Z�1 that is typical
for bearing or sealing systems and, contrary to general expectation, we find a rich family of flow states. We prove that

the axial flow also stabilizes the Taylor–Couette flow in cases with a very short cylinder and narrow annular gap with

axial flow in a thin layer directed along the surface of the inner rotating cylinder.

The elaborate series of numerical experiments was done with the help of FLUENT 5.5/6.0. Detailed descriptions of

the grids used and other numerical facilities are given in Section 6.

The change from one laminar flow to another, or a transition from a laminar flow to turbulence, is a function of the

base flow as well as the type of small perturbations. We found a rich family of typical patterns in large intervals of

Reynolds numbers. The results of the numerical experiments are discussed in Section 7.
2. The main problem

The study of the Taylor–Couette problem for the parameters defined below was stimulated by an industrial project

(Bordag, 2001). In many technical systems the problem of transmitting energy and momentum is solved using shafts

and corresponding bush bearing systems with or without radial sealing. In a typical situation, one is concerned with a

small Taylor–Couette annulus, narrow slits between cylinders and with axial and tangential oscillations or with a weak

axial flow along the surface of the inner cylinder. In general, these systems are very complicated and it is necessary to

study simpler problems in order to isolate a particular mechanism and to develop and test hypotheses governing their

behavior. We chose here only one of the most typical cases for its technological importance and, from a fundamental

point of view, for its rich dynamics and in order to try to describe all possible flow states in this case.

We consider the motion of the fluid in an annulus between two cylinders as represented in Fig. 1.

The annulus dimensions are: gap width d, annulus span l, radius of the inner cylinder rin; an outer cylinder rout: The
corresponding dimensionless geometric parameters are the aspect ratio G ¼ l=d and the radius ratio Z ¼ rin=rout:We use
these notations throughout the paper. For many sealing or bearing systems G�1 and Z�1: In all of our calculations we
fix G ¼ 1:02; Z ¼ 0:95356:
We assume that the inner cylinder will turn at the constant rate o: The outer cylinder is at rest, the axial flow has a

constant velocity w0 and we assume rinobw0: The equations of fluid motion and boundary conditions will be rendered
dimensionless using d; as a length scale. The radius of the inner cylinder shall be denoted by R ¼ rin=d in dimensionless

units; this shall be used in all sections of this paper.

The ingoing and outgoing gaps for the axial flow are very thin cylindrical slits, with the gap width denoted by ~d and
the annulus span of slits denoted by ~l: The slits are long and narrow in comparison to the main annulus i.e. l�~l; db ~d :
The ends of the slits narrow conically to the lower order of scale, which means the narrowest part of the slit has the

width
~~d ; which is very small, db ~db ~~d : A more detailed picture of the slits is given in Fig. 7. The studied flow states are

very sensitive to perturbations. Therefore, we try to construct a situation which is most adapted to technical facilities or

physical experimental possibilities and imitate the sealing arrangements with conically tapering slits.

It is characteristic for technical applications that the sealing medium be oil with non-vanishing viscosity. In our work

we shall consider an incompressible viscous fluid in the cylindrical annulus.



ARTICLE IN PRESS

ω

w0d

l

l

rout rin

z

~

~
d

Fig. 1. The geometry of the annulus. The radii of the inner and outer cylinders are equal to rin; rout correspondingly; the annulus span
is denoted by l; the annular gap width is d ¼ rout � rin: The corresponding geometrical parameters of the slits are denoted by ~d and ~l:
Other notations are explained in the text.
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3. An approximation of the exact solution in cases of a rotating inner cylinder

The classic case of the Taylor–Couette flow of incompressible viscous fluid in an annulus between two cylinders was

investigated analytically in Wendl (1999). In comparison to the famous work of Taylor (1923), the author studied

cylinders of a finite length, thus finding a much more complicated formula for the azimuthal component of the

Taylor–Couette flow which describes the influence of cylinder caps on the flow. As understood from the experiments of

Ji et al. (2001) and Kageyama et al. (2004) if the Reynolds number grows, the influence of the Ekman layer drops along

the cylinder caps. As a result, the profile of the solutions becomes more and more different from the pure

Taylor–Couette solution due to the emergence of secondary flows in the annulus.

Wendl (1999) did not mention any physical conditions for the applicability of his solutions. He implicitly assumed

that the Taylor–Couette flow in a short cylinder is an unidirectional axial symmetric steady flow and got an exact

solution for the azimuthal component of the flow. This solution will be an exact solution of the Navier–Stokes

equations in the limit of small Reynolds numbers only.

With analytical and numerical methods we estimated the radial and axial components of the velocity in the

Taylor–Couette flow, as shown later in our work. These components are small compared with the azimuthal

component. This, the basic Taylor–Couette flow is thereby almost unidirectional for short cylinders with G�1 and
radius ratio Z�1:
We shall consider the flow in the annular gap with width d ; span l; and radius of inner cylinder rin as on the Fig. 1

without slits. We suggest now that the caps of the cylinders contact the inner cylinder and that there is no axial flow in

the annulus. The equations of the fluid motion and the boundary conditions will be rendered dimensionless using

v ¼ rino and P ¼ rðn=dÞ2 ¼ rvn=d as units for velocity and the pressure. Scalings of the velocities and of other

quantities shall change from section to section.

Let us study the azimuthal component of the Taylor–Couette flow in a short cylinder. Due to the axial symmetry two

of the components of the velocity vector uðr; y; zÞ vanish in this case and the velocity vector reads

uðr; zÞ ¼ ð0;V0ðr; zÞ; 0Þ, (1)

where V0ðr; zÞ is the azimuthal component. That is, we look for the leading term in the expansion of the velocity vector

in respect to the Reynolds number. The cylindrical Navier–Stokes equations can be reduced in this model to one

equation,

q2V0

qr2
þ

1

R þ r

qV0

qr
�

V0

ðR þ rÞ2
þ
1

G2
q2V0

qz2
¼ 0. (2)
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The boundary conditions can be rendered dimensionless as

V0ðr; 0Þ ¼ 0; V ðr; 1Þ ¼ 0; V0ð0; zÞ ¼ 1; V0ð1; zÞ ¼ 0; z 2 ½0; 1�; r 2 ½0; 1�. (3)

We make an additional scaling in the z-direction by G in order to reach a more convenient condition in which both

variables r and z lie in the interval ½0; 1�: The case considered was solved by Wendl (1999) using the Fourier

transformation. The solution has the following form:

V0ðr; zÞ ¼
1

4p

X1
m¼1

ðI1ðbmðR þ 1ÞÞK1ðbmðR þ rÞÞ �K1ðbmðR þ 1ÞÞI1ðbmðR þ rÞÞÞ sinðbmzÞ

ð2m � 1ÞðI1ðbmðR þ 1ÞÞK1ðbmRÞ �K1ðbmðR þ 1ÞÞI1ðbmRÞÞ
(4)

with bm ¼ ð2m � 1Þp=G: Here I1 and K1 are modified Bessel functions. This solution differs drastically from the simple

solution obtained by Taylor for the infinitely long cylinders. However, this solution remains an exact solution also for

long cylinders as it was in case of short cylinders. The series in Eq. (4) converges very slowly and it is difficult to apply in

comprehensive studies. We therefore looked for simpler analytic representations of this solution or for some substantial

approximated solution.

We study the case of short cylinders, i.e. G�1; with a narrow gap, Z�1; and Rb1: Under these assumptions and
taking into account r 2 ½0; 1�; we can simplify the initial equation (2) by replacing 1=ðR þ rÞ; 1=ðR þ rÞ2 with the

constants 1=R; 1=R2: For the simplified equation with constant coefficients, we obtain the solution in a closed

analytical form,

V0ðr; zÞ ¼
2

p
arctan sinh�1

p
G

r
� �

� sinh�1
p
G
ð2� rÞ

� �� �
sinðpzÞ

� �
, (5)

in which r 2 ½0; 1� and z 2 ½0; 1�: This is a convenient form of the approximated solution for the fundamental mode of

the Taylor–Couette flow profile which we will use in what follows.

Agreement between the approximated and the exact solutions is very strong, as can be seen in Fig. 2. We used also the

program FLUENT 5.5/6.0 in the axisymmetric case to calculate the corresponding solution of the full system of

Navier–Stokes equations. The azimuthal component of this solution is given on the same Fig. 2. The very good

agreement between azimuthal components in all cases studied confirm the assumption that the flow in this system is

quite unidirectional.

The approximated solution (5) is stable for small Reynolds numbers Re and can be used as a base state in a stability

analysis.

We note an earlier attempt by Vladimirov et al. (2001) to find an approximated solution which takes the influence of

the caps into account; the results, however, are farther from the exact solution than ours.
4. Stability problem for the Taylor–Couette flow under small perturbations

4.1. Local stability study for a short cylinder

We consider the axisymmetrical stability problem of the Taylor–Couette flow. We assume that the velocity vector
~uðr; zÞ which describes the fluid motion in the annular gap such as in Fig. 1 can be represented as a sum of two vectors

uðr; zÞ ¼ ðu; v;wÞ and vðr; zÞ ¼ ð0;V0; 0Þ:

~uðr; zÞ ¼ vðr; zÞ þ uðr; zÞ ¼ ð0;V0; 0Þ þ ðu; v;wÞ, (6)

where V0 describes the fundamental mode of the Taylor–Couette flow and uðr; zÞ a perturbation of this mode. We
assume also that the pressure ~P can be represented as sum ~P ¼ P0 þ p:
Under the following assumptions

max
r;z

jvðr; zÞjbmax
r;z

juðr; zÞj; max
r;z

jruj

juj
bmax

r;z

jrvj

jvj
, (7)
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Fig. 2. The profiles V0ðr; zÞ of the exact (dashed line), the approximate solutions (continuous line) and numerical solution (dash-dotted
line) as functions of r on z-levels equal to z ¼ 0:05; 0:25; 0:5 with G ¼ 1: The numerical solution was found with program FLUENT 5.5/

6.0 in axisymmetric case for Re ¼ 100:
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in which r denotes the spatial gradient of the corresponding velocity, the system of the Navier–Stokes equations can be

linearized. The linearized Navier–Stokes equations (LNSE) in the axisymmetrical case take the form

qtu � 2Re
vV0

R þ r
¼ �qrp þ Du �

u

ðR þ rÞ2
,

qtv þRe qrV0u þ
V0

R þ r
u þ qzV0w

� �
¼ Dv �

v

ðR þ rÞ2
,

qtw ¼ �
1

G2
qzp þ nDw,

qru þ
u

R þ r
þ qzw ¼ 0, ð8Þ

where D is the Laplace operator,

D ¼ qrr þ
qr

R þ r
þ

qzz

G2
. (9)

The Reynolds number is Re ¼ orind=n; and n denotes the viscosity of the fluid. The dimensionless variables r; z which
describe the flow in the cylindrical annulus belong to the intervals

r 2 ½0; 1�; z 2 ½0; 1�. (10)

Here we use the dimensionless variables as introduced in the Section 2 and in addition, we use the value d2=n and rino
to render time and velocities dimensionless as well. We leave the same notations as above for the velocities in the

dimensionless case. Thus, now jV0j�1 and it follows from conditions (7) that jvj51:
We shall introduce a commonly used stream function C for cases of axial symmetry [see Milne-Thomson (1996)]

u ¼
qzC

R þ r
; w ¼ �

qrC
R þ r

. (11)
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In terms of the stream function C and the azimuthal velocity v the LNSE of Eqs. (8) turn into a system of two coupled

equations

qt
eDC�

Re

G2
2qzV0

R þ r
v þ

2V0

R þ r
qzv

� �
¼ DeDC�

eDC
R þ rð Þ

2
,

qtv þRe qrV0 þ
V0

R þ r

� �
qzC

R þ r
� qzV0

qrC
R þ r

� �
¼ Dv �

v

ðR þ rÞ2
. ð12Þ

We note that the value eDC is an azimuthal vorticity Uy defined by

Uy ¼ eDC ¼
1

G2
qzu � qrw; where eD ¼

D
R þ r

. (13)

The basic Taylor–Couette flow is an axial inhomogeneous flow in cases of short cylinders, due to the influence of the

cylinder caps. This inhomogeneity leads to additional terms which distinguish between system (8) and the

corresponding linearized Navier–Stokes equations for an infinitely long cylinder. We shall now prove that these

additional terms cause the propagation of dispersive waves in the Taylor–Couette flow.

We bear in mind that, in the case of a short cylinder with very narrow gap,

G�1; Z�1; Rb1. (14)

Under these assumptions we can simplify the system of equations (12) by replacing the coefficients 1=ðR þ rÞn (note

r 2 ½0; 1�) with the constants 1=Rn; n ¼ 1; 2: The operators qz and qr can be replaced by the multiplicative operators

qr�1=d ; qz�1=l or, in the dimensionless case, by

q
qr

�1;
q
qz

�
1

G
(15)

due to Eqs. (10) and (14). Furthermore, we assume

qV0

qr
b

V0

R þ r
(16)

and neglect V0=ðR þ rÞ in system (12). We shall now collect the leading terms in Eqs. (12) only and obtain a simplified

system of equations

qtDC� 2Re qzV0v � 2ReV0qzv ¼ D2C;

qtv þ dRe qrV0qzC� dRe qzV0qrC ¼ Dv;
(17)

in which no-slip boundary conditions ujS ¼ vjS ¼ wjS ¼ 0 on the inner surface S of the annulus are adopted. In system

(17) we denote D ¼ q2rr þ G�2q2zz; and the constant d  1=R is small, d51:
The standard, straightforward way to investigate the stability problem consists is in finding exact solutions of the

eigenvalue problem corresponding to the system of equations (17). Thus the perturbation uðr; zÞ can be represented as a
series over the eigenfunctions. Alternatively, the system could be solved numerically wherein spatial discretization of the

problem may be accomplished by a solenoidal Galerkin scheme. In our case these procedures may be accomplished

numerically only, but this task is outside the scope of the present work. The quantitative investigation cannot, however,

change the principal physical picture of transition.

Nonetheless, we can produce good qualitative characteristics of the flow in the annulus by applying local stability

analysis. This method was first developed in the analysis of an inhomogeneous complex astrophysical flow (Goldreich

and Schubert, 1967; Lebovitz and Lifschitz, 1993). The method of local qualitative analysis has been used to study

hydrodynamical systems for the last 10 years [see the works Lifschitz (1991), Lifschitz and Hameiri (1993) whose

subjects are close to our work]. Very similar methods were used in Meseguer (2002), Hristova et al. (2002) in a study of

subcritical transitions of the Taylor–Couette flow in the case of counter-rotating cylinders. This method allows us to

investigate the main physical processes of the concerned Taylor–Couette flow, the transition mechanism and transition

states.

The main idea of the local stability analysis method (also called a method of infinitesimal perturbations) can be

described as follows. We suppose the amplitude and gradients of the main state (the fundamental mode of the

Taylor–Couette flow in our case) to be preserved under perturbations. This means we keep the values V0; qzV0 and

qrV0 unaltered; that is, we assume they are constant. For all components of the perturbation vector uðr; zÞ ¼ ðu; v;wÞ
and their derivatives, Taylor series truncated after the first two terms shall be used. Regarding the physical

point of view, we assume that the perturbation scale is much smaller than the typical scale of the axial inhomogeneity

in the Taylor–Couette system. This is the locality condition. As other investigators have done, we present the
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perturbation as a plane wave,

C�bC expðgt þ iðkrr þ kzzÞÞ; v�bv expðgt þ iðkrr þ kzzÞÞ, (18)

in which bC and bv are the amplitudes of the waves. The vector of wavenumbers k ¼ ðkr; kzÞ defines the spatial direction

of the plane wave propagation. The locality condition requires that kr; kzb1: In Eqs. (18), g has the dimension of a
frequency; in stability analysis it is referred to as the time increment (or simply increment). In the case of intrinsic

instability of the investigated system, g will be positive. This means that the amplitude of the plane wave will infinitely
increase with time.

The substitution of the plane wave Eqs. (18) into the linearized system (17) results in a system of algebraic equations

for the increment g;

�k2ðgþ k2ÞbC� 2
Re

G2
ðqzV0 þ iV0kzÞbv ¼ 0; ðgþ k2Þbv þ idRe ðqrV0kz � qzV0krÞbC ¼ 0,

where k2 ¼ k2r þ G�2k2z : This system can be solved explicitly, and two solutions for the increment g can be obtained:

g� ¼ � k2 �
Re ð2dÞ1=2jkzqrV0 � krqzV0j

1=2

Gk
ðk2zV2

0 þ ðqzV0Þ
2
Þ
1=4

� cos
1

2
arctan

qzV0

kzV0

� �� �
� i sin

1

2
arctan

qzV0

kzV0

� �� �� �
. ð19Þ

As a consequence, two different regimes of motion can exist in this system.

The motion in the annulus is strongly inhomogeneous in the z-direction due to the influence of the cylinder caps. Let

us now look for local increments on the middle surface r ¼ 0:5 on three different lines z ¼ 0:25; 0:5; 0:75: For z ¼ 0:5;
the increment has no imaginary part and on this line the system shows no oscillations. In this case the real part of the

increment is represented in Fig. 5. On the lines z ¼ 0:25; 0:75 the increment has an imaginary part and the system has

oscillations with frequencies directly proportional to the gradient of the undisturbed state.

For qzV0 ¼ 0 we find two real solutions for the increment and, consequently, two branches of non-oscillating

solutions.

The two branches of the increment given by Eq. (19) may also have an oscillating character. For qzV0a0 we must

address two oscillating solutions which correspond to waves of the inertial type. If in addition kzqrV0 � krqzV0 ¼ 0

holds, then these two oscillating branches have a point of intersection. The intersection point g� ¼ �k2 is associated

with a time-decreasing solution. On the other hand, perturbations with kzqrV0 � krqzV0 � 0 have the possibility to

exchange energy.

4.2. Local stability of the Taylor–Couette flow under a small axial perturbation flow

To date, the study of the stability problem of the Taylor–Couette flow concerned arbitrary small perturbations. Let

us consider the effects of an axial flow near the surface of the inner cylinder. This flow can be generated by the pair of

Taylor vortices or an axial flow through the narrow slits in the caps of the cylinders near the surface of the inner

cylinder as shown in Fig. 1.

In order to simplify the study we suggest that the axial velocity wðr; zÞ has a nonzero value wðR; zÞ on the surface of
the inner cylinder. Additionally, we suggest that the boundary condition is homogeneous in the z-direction, i.e.

wðR; zÞ ¼ z ¼ const holds. We can neglect here the dependence on the z-coordinate. The constant constituent of the

axial velocity distribution can be removed by a Galilean transformation z0 ¼ z � zð1þ RÞt; z0 ! z: The boundary
condition wðR; zÞ ¼ za0 provides, via the narrow gap approximation, the linear velocity profile in the r-direction

w � zð1� ðr � RÞÞ ¼ zð1þ RÞ � zr. (20)

Now we can rewrite the LNSE, Eqs. (8), in the form

qt
eDC� zRe rqz

eDCþ
zRe qzC

ðR þ rÞ2
�
2Re qzV0

G2ðR þ rÞ
v �

2ReV0

G2ðR þ rÞ
qzv ¼ DeDC�

eDC
ðR þ rÞ2

,

qtv � zRe rqzv þRe qrV0 þ
V0

R þ r

� �
qzC

R þ r
�Re qzV0

qrC
R þ r

¼ Dv �
v

ðR þ rÞ2
.

We shall now simplify this system of equations, keeping in mind that we are investigating the influence of small

perturbations and from conditions (7) it follows immediately that z5V0 or z51: We expand the coefficients in the
system into a series with respect to the parameter d ¼ 1=R and preserve only the main terms. The approximated system
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for the stream function C and for the azimuthal velocity v has the structure

qtDC� zRe rqzDCþ zdRe qzC�
2Re

G2
qzV0v �

2Re

G2
V0qzv ¼ D2C,

qtv � zRe rqzv þ dRe qrV0qzC� dRe qzV0qrC ¼ Dv. ð21Þ

As noted in the previous Section 4.1 we shall study the stability problem under small local perturbations. Thus the

perturbation scale is much smaller than a typical scale of inhomogeneity in the system. This locality condition implies

the inequalities

krb1; kzb1.

Following the same path, we can postulate that the values V0; qzV0 and qrV0 will change very slowly as compared to

perturbations. In that way, they can be represented by a Taylor series which is truncated after the first two terms. As

usual, we assume that the perturbation uðr; zÞ ¼ ðu; v;wÞ has the form of a wave with time dependent amplitudes and

with time-dependent wavenumber in the r-direction,

C ¼ bCðtÞ expðiðkrðtÞr þ kzzÞÞ,

v ¼ bvðtÞ expðiðkrðtÞr þ kzzÞÞ, ð22Þ

in which C is the stream function (11) and v is the azimuthal velocity. The substitution of formulas (22) into the system

of equations (21) leads to the simplified system of equations

� qtððk
2
r ðtÞ þ k2z=G

2ÞbCðtÞÞ � iðqtkrðtÞ � zRe kzÞrðk
2
r ðtÞ þ k2z=G

2ÞbCðtÞ

þ izdRekz
bCðtÞ �

2Re

G2
ðqzV0 þ iV0kzÞbvðtÞ ¼ ðk2r ðtÞ þ k2z=G

2Þ
2 bCðtÞ, ð23Þ

qtbvðtÞ þ iðqtkrðtÞ � zRekzÞrbvðtÞ þ idReðqrV0kz � qzV0krÞbCðtÞ ¼ �ðk2r ðtÞ þ k2z=G
2ÞbvðtÞ.

The solution of this system can be found for all r if the condition

qtkrðtÞ � zRe kz ¼ 0, (24)

is fulfilled, because only two terms in system (23) have coefficients which depend on the variable r: Eq. (24) can be
solved easily and we find that

krðtÞ ¼ krð0Þ þ zRe tkz. (25)

The radial component kr of a wavenumber vector k increases or decreases linearly, depending upon the sign of the axial

component kz of the wavenumber vector. In other words, we can explain the action of the axial shear as a change of the

radial scale.

The time dependence of the wavenumber krðtÞ leads to an algebraic non-exponential evolution which can be described

by the system of equations

� qtððk
2
r ðtÞ þ k2z=G

2ÞbCðtÞÞ þ izdRekz
bCðtÞ �

2Re

G2
ðqzV0 þ iV0kzÞbvðtÞ ¼ ðk2r ðtÞ þ k2z=G

2Þ
2 bCðtÞ,

qtbvðtÞ þ idRe ðqrV0kz � qzV0krÞbCðtÞ ¼ �ðk2r ðtÞ þ k2z=G
2ÞbvðtÞ. ð26Þ

Perturbations such as studied here were considered in fluid dynamics since the work of Lord Kelvin, but only recently

has it been realized that these perturbations can act as a trigger in subcritical turbulence transition. The untypical

properties of our flow originate from the fact that the corresponding LNSE operator is not self-adjoint, as is usual for

shear flows such as: plane Couette flow [see Lominadze et al. (1988), Buttler and Farrel (1992)], Poiseuille flow (Reddy

and Hennigson, 1993), counter-rotating Taylor–Couette flow (Meseguer, 2002; Hristova et al., 2002), boundary layer

(Gustavsson, 1979), Kepler rotation (Lominadze et al., 1988). Apart from the modes of the discrete spectrum, there

exist many modes of the discontinuous spectrum. The algebraic time evolution of these modes can achieve large

amplitudes which can reach a 100-fold of the initial values. Another remarkable property of these modes is their trait to

redistribute the energy and momentum between different types of perturbations (Chagelishvili and Chkhetiani, 1995;

Chagelishvili et al., 1996). In order to give a qualitative description of the impact from an axial flow on the stability of

the Taylor–Couette flow we will find the increment for a fixed instant time. Analogous to Eqs. (18), we have the

representationbCðtÞ� expðgtÞ; bvðtÞ� expðgtÞ (27)
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for time-dependent amplitudes of wave (22). If we hold the time dependence of krðtÞ virtually unaltered, we can consider

the stability analysis as local in time. The substitution of formula (27) into the system of equations (26) leads to an

algebraic equation for the increment. In this system we now have two solutions for the time increment g

g� ¼ �k2 þ
izdRe kz

2k2
�
Re d1=2ð64k4L2ðqzV0Þ

2
þ ðz2dk2z þ 8k2kzV0LÞ

2
Þ
1=4

2Gk2
expð�iFÞ, (28)

L ¼ kzqrV0 � krqzV0; F ¼
1

2
arctan

8k2qzV0L

z2dk2z þ 8k2kzV0L

 !
.

For small zRe; the dispersion curves have the same form as acknowledged in the previous section (without any axial

flow). In the intersection area kzqrV0 � krqzV0 � 0 we now have

gþ ¼ �k2 þ
izdRe kz

2k2
; g� ¼ �k2. (29)

This dispersion equation is similar to the equation for the Rossby waves for inhomogeneous rotation of the Earth or

other systems. The wavenumber krðtÞ is no longer fixed as in the previous case (18) but it has a time dependent value. As

a consequence, the point ImðgÞ or ReðgÞ will move along the branches (similar to the branches on Figs. 3–5) with time
because g is a function of krðtÞ: Chagelishvili and Chkhetiani (1995) have proved that, under the influence of a shear
motion, the frequencies of the Rossby waves and inertial waves will be modified to take the same values. This

circumstance leads to an energy exchange between different modes in the flow. The same mechanism of the energy

exchange is characteristic for system (26).

Suppose that we start the motion near the intersection point; one mode is unstable and starts to grow, while the

second mode dissipates. In the intersection point their frequencies are very close to each other and a resonance

interaction may take place. In this case the dissipative mode loses the main part of its energy. Thus, we have found a

mechanism for the instability which may be responsible for transport and exchange of energy and angular momentum.

If we analyze the solutions of system (26) we notice that axial flow leads to a strong differentiation in the energy

growth of the perturbations depending on the axial level. This dependence is represented by two Reynolds numbers in

Fig. 6. This asymmetry in the energy growth in dependence on the axial level can raise the process of the symmetry

breaking in the Taylor–Couette system in short cylinders.

We can assume that the same mechanism also works without any axial flow in the system. Consider two symmetrical

counter-rotating Taylor vortices in the annulus. In this case a radial distribution of the axial velocity component is

inhomogeneous in the annular gap and the axial velocity component goes in opposite directions in different parts of the

annular gap. If a small perturbation amplifies the circulation in one of the vortices for a small interval of time, the radial

gradients of the axial velocity will appear in different parts of the gap. Therefore, the degree of growth of perturbations

in the continuous spectrum will be different in the two parts of the gap and the faster-growing perturbation can trigger

an irreversible process of symmetry breaking.
5. A symmetry breaking and helicity conservation law

In the classical Taylor–Couette problem of pure rotation of one or both cylinders, the system possesses Z2 and SOð3Þ

symmetries. The implementation of an axial flow immediately destroys the Z2 mirror symmetry. The axial perturbation

flow amplifies inhomogeneously different intrinsic modes in the evaluated states, as proved in the previous section. This

results in a rich variety of super critical stationary and quasiperiodic states. This symmetry breaking for short cylinders

can be considered as the emergence of certain helicity states.

Helicity is a topological characteristic of flow, and it is the second inviscid integral invariant for the Euler equations.

Helicity is defined by

H ¼

Z
V

u � ½r � u�dV , (30)

in which the vector U  r� u defines the vorticity of the flow. The helicity is pseudo-scalar due to

Hð�rÞ ¼ �HðrÞ.
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It is well known that helicity is an important quantity in the study of dynamics and stability of complicated vortex

structures and flows. States with maximal helicity have minimal energy (Moffat and Tsinober, 1992; Chkhetiani, 2001;

Chkhetiani et al., 2003).

In the same way as we procure the evolution equation for the energy of the system

qtE ¼

I
S

p � un dS � n
Z

V

½r � u�2 dV ,
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we obtain the following evolution equation for the helicity:

qtH ¼

I
S

½r � u�n
u2

2
�

p

r

� �
dS � n

Z
V

½r � u� � ½r � ½r � u��dV , (31)

in which n is the unit normal vector orthogonal to the boundary surface S:
For inviscid fluids the right-hand side of Eq. (31) is reduced to the first term. Helicity is conserved if the normal

component of the vorticity on the boundary surface disappears, ½r � u�n ¼ 0; or if there is a potential flow. Let S

include a bounded volume of an ideal fluid with Ua0 and Ha0; then, during motion, helicity will be conserved. For
fluids with very small viscosity na0; the helicity is no longer conserved but changes very slowly due to the negligibility
of the second term in Eq. (31). As a consequence, for large Reynolds numbers we can treat the helicity as an

approximately conserved quantity.

In a classical Taylor–Couette system with mirror symmetric boundary conditions we expect an even number of

counter-rotating vortices. The growth of anomalous modes and the phenomenon of the appearance of time-dependent

states can be considered as a mirror symmetry-breaking process and a development of states with a definite sign of the

helicity. Let us represent the helicity in the cylindrical coordinate system and reduce the formula to the case of short

cylinders. The components of the vorticity U are

Ur ¼ �qzv; Uy ¼ qzu � qrw; Uz ¼ qrv þ
u

r
. (32)

Using expressions (32) we find for the helicity H in the axisymmetrical case the convenient representation

H ¼ 4p
Z Z

S

vqzu þ wqrv þ
wv

r

� �
rdrdz.

For a narrow annular gap with Z�1 and Rb1; we can approximate the formula for the helicity by

H ffi 4pR

Z Z
S

vUy þ
wv

r

� �
drdz � 4pR

Z Z
S

vUy drdz.

The axial flow generates a constant stream of helicity and angular momentum through the annulus. It is an important

source of symmetry-breaking in the system.
6. Numerical facilities

Major advances in computer technology and numerical techniques have made it possible to propose an alternative or

at least a complementary approach to the classical and analytical techniques used in laboratory experiments.

Computational fluid dynamics becomes part of the design process. But discontinuities or deep gradients lead to

computational difficulties in the classical finite difference methods, although for the finite element methods a suitable

variational principle is often not given. Therefore, we consider the finite volume methods, based on the integral form

throughout the cell, instead of the differential equation. Rather than a point-based approximation on grid points, we
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break the domain into grid cells and approximate the total integral over each grid cell. This is the cell average, which

equals this integral divided by the volume of the cell.

We consider the axial symmetric case as well as the full 3-D flow in the annulus. The numerical method allows us to

choose a so-called segregated or a coupled solver. The simulation process consists of [see, e.g., Fröhner (2002)]:

(i) division of the domain into discrete control volumes (construction of the computational grid);

(ii) integration of the governing equations (in axial-symmetric or in full 3-D form) into the individual control

volumes to construct algebraic equations for the discrete variables (velocity, pressure, temperature and other

parameters);

(iii) linearization and solution of the algebraic system to yield updated values of the variables.

Both the numerical methods of the segregated and the coupled solvers employ a similar finite volume process, but the

approach used to linearize and solve the equations is different.

The FLUENT 5.5/6.0 (FLUENT 6.0 User’s Guide, 2001) simulation and post-processing program was used for the

numerical calculation of the flow. The unsteady 2-D axisymmetric or 3-D version of the Navier–Stokes equations is

solved as described using finite volume discretization on a structured quadrilateral grid (see Fig. 7).

The finite volume method has a first order upwind scheme and constant relaxation factors, while the SIMPLE

procedure for the pressure-velocity coupling is applied.

The grid is generated with the help of GAMBIT program and characterized by a large difference (100 times) between

boundary edges. It was possible, however, to save the grid structure and the quadrilateral. The smallest inflow and

outflow faces of the grid are divided uniformly by 20 nodes, whereas the nodes in the bigger geometry of the slits are

concentrated near the boundary, because some vortices may arise when the Reynolds number is large (Ladyshenskaya,

1969). The major volume of the annular gap is divided 50� 70 nodes, uniformly in the axial direction and linear

condensing in the radial direction.

Next, we designed a 2-D axisymmetric model, using a rotating reference frame. The time step was selected to be 1
80
of

a single rotation. This dividing helps determine the flow motion state in the quarters of the rotation circle

(y ¼ 0; p=2;p; 3p=2). Each time step includes 30 iterations or fewer if the solution converges with the residual of order
Oð10�5Þ:
The plane of the 3-D grid corresponding to the 2-D axisymmetric model has to be coarser, due to the large

diameter of the inner cylinder and the resulting large number of cells in the projection on the ðr; yÞ-plane. There are only
10 nodes on the inflow and outflow faces in the conical tapering of the slits and 25� 30 in the annulus of the slits

(see Fig. 8).

This results in 1 087 040 hexahedral cells, which is close to the limit for computation and post-processing on a

single processor in an acceptable time. Another, more complicated 3-D simulation would be possible using parallel

computing (Myrnyy, 2001). Such a program is usually written with the help of Message Passing Interface (MPI-2, 1997)

or some other specific approaches Mirniy and Fröhner (2001). This is the aim of further investigations and

developments.

Some test simulations have shown that the 3-D case is not sensitive enough to determine very small scale instabilities

correctly. The results of the 3-D and 2-D axisymmetric simulations on the same grid, however, are equivalent. This was

verified using the same coarser grid for the 2-D case or by solving the stationary problem without instabilities. A finer

grid for the 2-D axisymmetric case, by contrast, does not provide more substantial changes to the behavior of the

unstable flow. Therefore, the 2-D axisymmetric case (see Fig. 7) with 7690 quadrilateral grid cells is chosen and can be

considered for all computations with similar geometry, without loss of accuracy.
Fig. 7. 2-D structural grid for the annulus and the slits with 7690 quadrilateral cells.
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Fig. 8. 3-D grid with 1 087 040 hexahedral cells.
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7. Pattern structure in the annulus under influence of the axial flow

In numerical experiments which simulated the flow in the annular gap as in Fig. 1, and in more detail in Fig. 7, both

axial symmetrical and 3-D cases were studied.

The analytical part of the paper deals with a simple geometry with a rectangular cross-section in order to make the

problem analytically manageable, whereas the numerical study is done for a region with narrow slits. These slits are

absolutely crucial for any real experimental situation as inlet and outlet of the axial flow. Slits do exist in any real

experiment, at the very least due to the sealing rings at the end of the cylinder caps.

Three-dimensional calculations had been prepared for a large number of examples. It became apparent, however,

that no torsion or other remarkable 3-D effects arose in the system for Rep6000: Therefore, for further numerical
investigations we used the axisymmetrical case, which saved both time and computer capacity. As a graphical

representation of results in 3-D are insufficiently detailed when portrayed on paper, we give only one, Fig. 9, to give an

impression of the process under investigation.

In all investigations the inner cylinder rotates with the same azimuthal velocity V0 ¼ 2porin on the surface of the

inner cylinder. We used this value to render other velocities dimensionless. In all figures (Fig. 9), the weak axial flow

moves from left to right. The entrance and exit slits in the ends of conical tapering have the radius ratio ~Z ¼ 0:99992:
We found that four different flow states exist, with typical patterns depending upon the relation between azimuthal

and axial Reynolds numbers. The azimuthal Reynolds number Reaz is defined by Reaz ¼ V0 d=n and coincides with the
previously introduced Reynolds number Re multiplied by 2p (see Section 4.1). The axial Reynolds number is defined by
Reax ¼ wmax d=n:
We studied a pure rotation and then switched on an axial flow to investigate the sensitivity of the flow patterns to

small axial perturbations. The pattern structure is very sensitive to the presence of an axial flow. We induced a very

weak axial flow with Reax5Reaz; nevertheless the pattern structure changed immediately under the influence of the
axial flow. We studied the states distribution in the regions Reaz 2 ½0; 12 000� and Reax 2 ½0; 10�: The results for the most
interesting part are that for Reaz 2 ½0; 2500� and Reax 2 ½0; 1�; they are represented in the schematic diagram of Fig. 10.

Let us consider the case of pure rotation without any axial flow. The most probable state for a short cylinder with an

aspect ratio G�1 can be described as follows: the nearly quadratic cross-section of the annulus is filled with two counter-
rotating stable Taylor vortices, as represented in Fig. 11.

We proved that this structure remains mirror-symmetric for a large region of azimuthal Reynolds numbers,

Reaz 2 ½0; 2500�: The investigated states are denoted in Fig. 10 by boxes, &; on the horizontal axes. All of them
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Fig. 9. Three-dimensional simulation of the two symmetrical stationary vortices. Only one of the vortices is represented to avoid an

overload in the figure on the left. The counter lines of the velocity magnitude are given in the 3-D case on the left and in cross-sections

shown on the right for y ¼ 0;p=2;p; where n ¼ 0:1ð10�3 m2=sÞ; w ¼ 0:016; umax ¼ 0:060; Reaz ¼ 1256:0; Reax ¼ 0:1:
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have quite similar structures: two stationary Taylor vortices in the annulus, raised to very high azimuthal Reynolds

numbers.

An augmentation of the azimuthal Reynolds numbers leads to a second state in the annulus. For very large azimuthal

Reynolds numbers Reaz44000; the intrinsic instabilities give rise to perturbed states with many small vortices. This flow
pattern can be interpreted as a region with a fine-grained structure overlaid with a large-scale structure—three Taylor-

like vortices [see Fig. 12].

Consider now the onset on an axial flow with relatively small velocity. The existence of the axial flow can be

understood as a small perturbation of the base flow with pure azimuthal velocity. In the region of the azimuthal

Reynolds numbers Rep1500; the axial flow promotes the counter-rotating Taylor vortices to move in the same

direction. As a result, the annulus will be filled for very small axial amplitudes of the axial flow with one stable vortex

(see Fig. 13). With the introduction of axial flow, we see the abrupt change in the pattern structure as it goes from two

stable Taylor vortices to one. This is the third pattern structure observed in this system; it is denoted by � in Fig. 10.

In the region of the Reynolds numbers Reaz�1500; Reax�0; 4 there exists a branch point in which three possible flow
states meet. For all axial Reynolds numbers 0:05oReaxo4 and Reazo1500; it is the first branch which is characterized
by one stable vortex in the annulus (see Fig. 13).

For 1250oReazo2400 and for the small axial Reynolds numbers 0oReaxo0:64; a second branch with two stable
Taylor vortices appears (see Fig. 11). For Reaz41500 and 0:3oReaxo0:9; the third branch appears with two

quasiperiodic natural oscillating vortices (see Fig. 14).

This branch represents nonstationary states. The energy and momentum of the system also show typical

quasiperiodic oscillations. The time dependence of energy is given in Fig. 15. The time dependence of the angular

momentum has quite the same form. In order to make energy dimensionless, we divided it by its value at small

Reynolds numbers, i.e. at Reaz ¼ 251:2; Reax ¼ 0:02: In Fig. 15 we also see that maximal values for the energy are
smaller in the perturbation state as in the nonperturbed flow.

We shall distinguish two different types of energy in the system: the rotation or toroidal energy, defined by

Etor ¼ 2p
Z

v2rdrdz;

and the energy shared by axial and local radial flow in the system

Epol ¼ 2p
Z

ðu2 þ w2Þrdrdz,

also called poloidal energy. Correspondingly with Reynolds numbers, the toroidal energy is three orders larger than the

poloidal energy. But the intrinsic instabilities in the system lead to steady energy exchange between different motion

types. This exchange we demonstrate by a parametric representation of the plane of both energies in Fig. 16.
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The flow field between differently shaped bodies of revolution were rarely studied either experimentally or

theoretically. The experimental work devoted to the case which is somewhat analogous to our case of motion in the

conical slits at the caps of cylinders was done by Wimmer (2000). For a rotating cylinder in a stationary cone he proved

that, due to the non-constant gap, different types of motion can coexist in the gap. By the growth of the Reynolds

numbers the first vortices appear at the location of the largest gap size and are distorted as they develop a larger axial

extension. The numerical studies in our geometry confirm this statement, as can be seen in Fig. 12.
8. Conclusions

We studied the Taylor–Couette flow under the imposition of a weak axial flow with a constant velocity w0 in the case

of a very short cylinder with G ¼ 1:02 within a narrow annulus gap Z ¼ 0:95356:
We have assumed that the outer cylinder is at rest and the inner cylinder turns at the constant rate o: The ingoing and

outgoing gaps for the axial flow are very thin cylindrical slits which direct the axial flow in a thin layer along the surface

of the inner rotating cylinder.

This is the first work in which the influence of the axial flow in a thin layer along the surface of the inner cylinder is

considered. The previous work by Chandrasekhar (1961), Weisberg et al. (1997) and Ludwieg (1964) studied an axial

flow that fills the full cross-sections between the cylinders.

A further important feature is that we found a rich family of flow states in a very narrow annulus gap Z ¼ 0:95356;
contrary to general expectations.

A convenient asymptotic representation for the azimuthal component of the exact steady solution of the

Taylor–Couette problem was found in the case of closed short cylinders G�1; Rb1 (Section 3). The approximate

solution we found, Eq. (5), will be an exact solution of the Navier–Stokes equations for infinitely large viscosity or for

Re! 0: For finite Reynolds numbers, a flow in a thin layer can emerge along the caps of the cylinder hence the fluid

motion in the cylinder will be no more unidirectional, and radial and axial components can arise. We estimated the

radial and axial components of the velocity. At first it seems that in cases of strong non-linear motion, the estimation

u=V0�R�1=2; w=V0�R�1=2 must hold. This follows from the comparison of the non-linear terms in the Navier–Stokes

equations. But the numerical computations for the short cylinders with Rb1 and large Reynolds numbers lead to

another estimation, u=V0�R�1; w=V0�R�1; which can be obtained from the Navier–Stokes equations in cases of very
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Fig. 11. Two symmetrical stationary Taylor vortices which are denoted by& in Fig. 10. Here, n ¼ 0:8ð10�4 m2=sÞ; w ¼ 0; umax ¼ 0:07;
Reaz ¼ 1570; Reax ¼ 0:

Fig. 12. A fine-grained structure of small vortices overlaid by large scale vortices. Here, n ¼ 0:1ð10�4 m2=sÞ; w ¼ 0; umax ¼ 0:04;
Reaz ¼ 12560; Reax ¼ 0:

Fig. 13. One large stationary vortex nearly fills the entirety of the annulus (these states are denoted in Fig. 10 by �). Here, n ¼
0; 1ð10�3 m2=sÞ; w ¼ 0; 05; umax ¼ 0; 04; Reaz ¼ 1256; Reax ¼ 0; 32:
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large viscosity. In Fig. 17 we represent the radial component of the dimensionless velocity only. For the other velocity

component, the distribution pattern is quite the same.

From the estimations obtained, it follows that the azimuthal component of the velocity has the main influence on the

stability of the system. Consequently, we can use for our qualitative stability analysis the approximate solution we

found.

We made a numerical simulation of the flow in presence of slits, i.e. without singularities in the corners of the domain,

and the azimuthal component of the velocity turned out to be very close to the approximate azimuthal solution. The

other two components of the velocity are small and thus not important.

The stability analysis done in Section 4 showed that the inhomogeneity of the base flow in the radial direction

as well as the axial flow cause a perturbation of the same type as in Rossby waves. We proved that the Z2-symmetry

breaking due to the axial flow in the Taylor–Couette flow is, at the same time, breaking the helicity symmetry (Section

5). States with non-zero helicity can accrue in the system (Section 7). The energy oscillations in the case of unsteady

patterns with natural oscillations as in Fig. 15 correspond to helicity oscillations in the system. This can be seen from

Fig. 14.

We are confident that up to the limits of numerical accuracy, the states are axially symmetric. The axial symmetry

will be conserved in cases of very short cylinders with weak axial flow. This situation was also proven in

experiments [see Mullin et al. (2002), Furukawa et al. (2002), Furukawa (2002), Watanabe et al. (2002) and Watanabe

et al. (2003)]. As we have shown in our work, the influence of the axial flow resulted in the destruction of mirror

symmetry.
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(a) (b)

(c)

t1 = 0.402 t2 = 0.427 (minimum energy)

(d) t4 = 0.490 (maximum energy)t3 = 0.478

Fig. 14. The natural quasiperiodic oscillations of the two vortices in the annulus (denoted in Fig. 10 by %) in four different moments of

dimensionless time. Here, n ¼ 0:3ð10�4 m2=sÞ; w ¼ 0:30; umax ¼ 0:05; Reaz ¼ 5108; Reax ¼ 6:333:

0 0.1 0.2 0.3 0.4 0.5
t

0

0.2

0.4

0.6

0.8

1

E

Fig. 15. The time dependence of the total energy EðtÞ for the flow for Reaz ¼ 5108; Reax ¼ 6; 333:
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The weak axial flow in an annulus between the rotating inner cylinder and the fixed outer cylinder has several

important engineering applications, particularly if the axial flow is bounded in a thin layer along the surface of the

rotating cylinder. We studied this case and proved that the axial flow stabilizes the motion and that in a system with

very narrow annulus different supercritical states are possible (Section 7). We remark that experiments in short

cylinders with an aspect ratio of G�1 without any axial flow showed a poor variety of states (Furukawa, 2002;

Watanabe et al., 2002). But for smaller aspect ratios, all the states which we described in our case can be observed. This

behavior of the Taylor–Couette system can be interpreted as follows. The influence of the weak axial flow along the
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R
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Reaz

Fig. 17. The distribution of the radial component of the dimensionless velocity max ~u in the Taylor–Couette flow for different states

dependent upon the Reynolds numbers Reaz and Reax: Two Taylor vortices in the annulus are denoted by&; one stable vortex by �;
natural oscillation state of two vortices by %:
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Fig. 16. The parametric representation of the energy exchange between Etor and Epol in the plane of the two energies for Reaz ¼ 5108;
Reax ¼ 6; 333:
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surface of the inner cylinder can be considered as a change in the geometry, i.e., as a shortening of the axial length of the

cylinder. This interpretation is supported by simple estimations.

We observe that the self-oscillating flow regime turns abruptly and strongly (see Fig. 15) in our case, contrary to the

experiments of Furukawa (2002), Watanabe et al. (2002, 2003) and where the changes were monotonic.
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For technical applications it is important to describe not only the velocity field but also the pressure distribution in

the device. The pressure differences in the annulus coming from the vortex motion can be estimated as R�1 of the

pressure difference corresponding to the axial flow.
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Meseguer, Á., Marques, F., 2000. Axial effects in the Taylor–Couette problem: spiral-Couette and spiral-Poiseuille flows. In: Egbers,

Ch., Pfister, G. (Eds.), Physics of Rotating Fluids. Springer, Berlin, pp. 118–136.

Milne-Thomson, L.M., 1996. Theoretical Hydrodynamics, Dover Publications, New York, p. 477.
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